Student Assembly Meeting

AGENDA

May 2, 2024
4:40 - 6:30 p.m.
Willard Straight Memorial Room

ZOOM
Meeting ID: 927 5625 4940 | Passcode: 411537

1. Call to Order
2. Reading of the Land Acknowledgment
3. Announcements
4. Open Microphone
5. Approval of the Minutes
6. Consent Calendar
 1. Resolution 78: Approval of the Infrastructure Fund Commission's Recommendations
7. Presentations
8. Second Readings
9. Third Readings
 1. Resolution 75: Establishing the Student Assembly Campus Pulse Committee and Addressing Transparency Issues
 2. Resolution 76: Campus Transit Initiative
 3. Resolution 79: Approving Special Projects Funding Request for Ghanaians at Cornell
 4. Resolution 80: Approving Special Projects Funding Request for Nigerian Students Association
 5. Resolution 81: Amending Resolution 39: Recommendation for the Student Activity Fee for 2024-2026
 6. Resolution 82: Approving Special Projects Funding Request for Caribbean Students Association
10. Appointments and Vacancies Calendar
11. Adjournment

If you are in need of special accommodations, contact the Office of the Assemblies at assembly@cornell.edu or Student Disability Services at (607) 254-4545 prior to the meeting.
Resolution 78: Approval of the Infrastructure Fund Commission’s Recommendations

Abstract: This resolution provides for the disbursement of roughly $53,000 across the four project applications submitted to the Student Assembly Infrastructure Fund Commission.

Sponsored by: Nicholas Maggard ‘26

Type of Action: Internal Policy

Originally Presented: 05/02/2024

Current Status: Placed on the Consent Calendar

Whereas, the Student Assembly Infrastructure Fund Commission has received four applications for the allocation of the roughly $53,000 in the Fund’s Disbursement Account.

Whereas, the $20,000 proposed allocation to Cornell University Sustainable Design will fund the creation of an alpha prototype, and partially a beta prototype, of modernized bus shelters on the Cornell Ithaca campus.

Whereas, the $13,650 proposed allocation to the Office of Student Government Relations will fund heat lamps at bus shelters to provide comfortable places to wait for buses in cold environments.

Whereas, the remaining-balance-allocation will fund features that enhance the Cornell Ithaca campus.

Be it therefore resolved, the sum of twenty thousand dollars ($20,000) be transferred from the Infrastructure Fund Disbursement Account to Cornell University Sustainable Design for the manufacture of their prototype bus shelter.

Be it further resolved, the sum of thirteen thousand six hundred and fifty dollars ($13,650) be transferred from the Infrastructure Fund Disbursement Account to the Student Assembly Office of Student Government Relations for the implementation of heating lamps at bus shelters.

Be it further resolved, the remaining balance of the Infrastructure Fund Disbursement Account be earmarked for the implementation of benches, trees, bike racks, and other features to be selected jointly between the SAIFC Chair, the Undergraduate Student-Elected Trustee, the President of the Student Assembly, and the Office of the University Architect. Such funds shall not be rolled back into the investment account.
Be it further resolved, the Office of Student Government Relations, within seven (7) days following passage of this resolution, shall be required to submit to the SAIFC Chair, further information regarding their application. Failure to submit adequate information will result in their allocation being re-allocated to the Triphammer Cooperative project, plus an additional $1,350 from the remaining-balance-allocation.

Be it further resolved, Cornell University Sustainable Design shall be required to submit a report within sixty (60) days following the transfer of funds on how SAIFC funds are being used. This report shall be provided to the SAIFC Chair elected by the 2024-2025 Student Assembly. Should such office be vacant, the report will be provided to President of the Student Assembly.

Be it finally resolved, this resolution shall take effect upon approval of the Dean of Students.

Respectfully Submitted,

Nicholas Maggard ’26

Parliamentarian of the Student Assembly

Chair, Infrastructure Fund Commission
Submission of Student Assembly Infrastructure Fund Commission Applications

SAIFC Commissioners,

The Student Assembly Infrastructure Fund Commission has received the following applications for funding:

- Application 1:
 - Franklin Berry (Triphammer Cooperative)
- Application 2:
 - Flora Meng (Cornell University Sustainable Design Sustainable Mobility Team)
- Application 3:
 - David Suarez (Office of Student Government Relations)
- Application 4:
 - James Paul Swenson (Student Assembly)

Pursuant to Appendix C of the Student Assembly Charter, I’ve attached the applications as well as all provided supplemental materials provided. The SAIFC will be meeting Friday, April 26th at 3pm to consider these applications. The Commission’s selections will be voted on at the final meeting of the Student Assembly on May 2nd.

Nicholas Maggard
Chair, Infrastructure Fund Commission
Applicant 1: Franklin Berry (Triphammer Cooperative)

Applicant Name: Franklin Berry
Applicant Organization: Triphammer Cooperative
Requested Funding Amount: $65,000.00
Current Status: Pending Commission Vote

Project Idea:
I'm applying for funding to complete a water mitigation project in the Triphammer Cooperative's basement. This project has an estimated cost of $65,000, as quoted by Cornell Facility managers. Specifically it will cost $15,000 for a ground study around the house to identify the infrastructure weaknesses. Then after those are identified it would cost an estimated $50,000 to seal and mitigate the basement.

Triphammer Cooperative Address: 150 Triphammer Rd, Ithaca, NY 14850

Impact on Undergraduate Students: This would make the basement more consistently usable for Triphammer residents and hopefully more tenable to hold events for the broader student body. It would also reduce health risks to the undergraduate student body and increase the longevity of the building which has served as on-campus cooperative housing for over fifty years.

Problem / Beneficiary:
Problem: The basement consistently floods when it rains. This funding would allow for the basement to be properly sealed and mitigate the flooding. The flooding of course makes the basement unusable during the rain and leads to sanitation problems, including certain mold growth putting students health in jeopardy.

Beneficiary: The main beneficiary would be the residents of Triphammer which are made up of undergraduate students who are selected into the house through a lottery system. The secondary beneficiary would be the general student body because it would enable Triphammer to host social and educational events for the general student body.
Motivation:

I wanted to help the communities I have been apart of using Student Assembly resources and advertise the Student Assembly to them and the opportunities it provides. To my knowledge, I also knew that the fund wasn't being accessed yet this year for a larger project and that the deadline for accessing this years round of funding was coming up. I wanted to put it to good use.
Applicant 2: Flora Meng (Cornell University Sustainable Design Sustainable Mobility Team)

Applicant Name: Flora Meng

Applicant Organization: Cornell University Sustainable Design Sustainable Mobility Team

Requested Funding Amount: $30,000

Current Status: Pending Commission Vote

Project Idea:

The Sustainable Mobility Team of Cornell University Sustainable Design (CUSD) would like to replace the bus shelter at the Rockefeller Hall Stop with a new sustainable, accessible, and aesthetic design. This new bus shelter will provide better notice to both waiting passengers and bus drivers by providing clearer signals about when a bus is coming in and if there are passengers waiting inside the shelter so that neither side will miss the other and have a poor service experience. Considering the Routes 30, 32, 90, and four other main bus routes served at this stop, we expect the better function of this new design to benefit a large group of people. Meanwhile, the new design continues the principles of accessibility, making sure that people with disabilities can use the shelter easily. The new shelter will provide enough space to hold wheelchairs, baby carts, and so on while giving places to bikers. Last but not least, the new design is more modern in aesthetics, which makes it more harmonious with the surroundings around Rockefeller Hall Stop and provides more enjoyment for the bigger Cornell Community and whoever walks past by.

We will use the funds provided by SAIF for material costs of our first full-scale prototypes, the Alpha and Beta Prototype. We are currently building a pre-Alpha Prototype with limited funding from CUSD’s allocated annual funds. The Alpha prototype will be completed in fall 2024, consisting of a full-scale mock up in the intended construction material. The Beta Prototype will follow after the Alpha Prototyping phase is complete. The Beta Prototype will be a full scale, on-site installation of the bus shelter for regular use. Altogether, we are requesting a total of $30,000 from SAIF to complete the Alpha and Beta Prototype phases.

Problem / Beneficiary:

At a large scope, the shelter redefines the experience of taking public transportation by improving the usability of the bus network and beautifying the otherwise mundane
structures that are bus shelters. This encourages the use of inherently sustainable systems like TCAT, helping to sustain the TCAT bus network in the long term and simplifying commutes to and from campus for students, faculty, and staff alike in the short term.

In terms of immediate sustainability gains, the shelter is entirely modular, and it deploys healthy materials throughout to maintain the mission of environmentally friendly design. We aim to use sustainably sourced hemp composite material to produce our triangular building modules. With the design of our architectural and mechanical team, this new material will not only generate less environmental impact but also allow more aesthetics while giving sturdy support for the whole construction. The materials used will be less toxic to the immediate occupants of the shelter and reduce the long-term carbon footprint of the shelter due to the ease of maintenance inherent in the modular nature of the shelter. When the bus shelter is eventually deployed in additional locations, its modularity allows for different design configurations to best match (a) the quantity of user demand and (b) the environmental conditions of the location.

Secondly, the conventional bus shelters do not provide enough visibility to bus drivers or the passengers waiting inside of the shelter. In our field survey, our team observed that people do not like to wait inside the shelter. For some, this is because they are afraid that bus drivers will not be able to see whoever is in the shelter easily, while for others, there is a fear of not making it to the bus if they remain inside of the shelter. Some shelters are not right next to where the bus stops, and if people are not paying attention to the road, missing the bus can be highly possible. Therefore, in our new bus shelter design, we incorporate a comprehensive lighting scheme which makes long-overdue UI/UX updates to bus infrastructure. When the bus is 5 minutes away, the shelter lights up with a dim, calm blue color. As the bus gets closer minute by minute, the intensity of the light increases, and at 1 minute to arrival, the shelter indicates to passerby and users the bus is arriving with an incorporated audio system. We arrived at this system requirement through user feedback and surveys disseminated to Cornell students.

In general, we expect any users of the TCAT bus system, ranging from students, faculties and staff, locals, and visitors, to benefit from this new design. The environment will also benefit from the use of healthier, more sustainable materials.

Motivation:

The group behind the design and implementation of the bus shelter is CUSD’s Sustainable Mobility Team, a student organization within the Systems Engineering department that has focused on public transportation in the Ithaca area ever since its founding several years ago. The team is fortunate to have the support of faculty advisor Sirietta Simoncini, a professor in the Systems Engineering department who is dedicated
to leveraging solutions for complex social challenges. Team members hail from a variety of backgrounds, including Urban Planning, Engineering, Architecture, Computer Science, and Environment and Sustainability, but share a common care for sustainability and a passion for making public transportation better in our communities. Our willingness to serve the Cornell and Ithaca communities and our individual skill sets motivate us to create deeply thought-out solutions for the problems that face our communities and the environment.
FACULTY ADVISOR: Sirietta Simoncini (ss2583)

<table>
<thead>
<tr>
<th>SHELTER DESIGN</th>
<th>SHELTER MASTERPLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abha Bhole (ab2792)</td>
<td>Eric Cholico (eac295)</td>
</tr>
<tr>
<td>Anabelle Lau (asl258)</td>
<td>Flora Meng (zm264)</td>
</tr>
<tr>
<td>Chau Trinh (cbt45)</td>
<td>Jack Turner (jt797)</td>
</tr>
<tr>
<td>Danyaal Tayyabkhan (dt533)</td>
<td>Jade Nichols (jfn34)</td>
</tr>
<tr>
<td>David Aitchison (dca64)</td>
<td>Julien Ricou (jr2357)</td>
</tr>
<tr>
<td>David Rodriguez (dab475)</td>
<td>Miao Hu (mh2286)</td>
</tr>
<tr>
<td>En Li (el788)</td>
<td>Nicholas Wilsey (nhw34)</td>
</tr>
<tr>
<td>Evan Masi (ejm296)</td>
<td>Paine Gronemeyer (phg44)</td>
</tr>
<tr>
<td>Han Zhang (hz664)</td>
<td>Sandy Smith (sms575)</td>
</tr>
<tr>
<td>Haoru Feng (hf352)</td>
<td>Will Swartzentruber (wds67)</td>
</tr>
<tr>
<td>Jason Zhou (nz66)</td>
<td></td>
</tr>
<tr>
<td>Jebreel Bessiso (jyb23)</td>
<td></td>
</tr>
<tr>
<td>Jerome Massicot (jam875)</td>
<td></td>
</tr>
<tr>
<td>Jessi Kaiman (jk2589)</td>
<td></td>
</tr>
<tr>
<td>Jon Wong (jw2366)</td>
<td></td>
</tr>
<tr>
<td>Kaien Chen (kc2253)</td>
<td></td>
</tr>
<tr>
<td>Kapinesh Govindaraju (kg534)</td>
<td></td>
</tr>
<tr>
<td>Nate Jones (nmj33)</td>
<td></td>
</tr>
<tr>
<td>Oliver Beard (osb26)</td>
<td></td>
</tr>
<tr>
<td>Roberto Piantini Reid (rmp254)</td>
<td></td>
</tr>
<tr>
<td>Sayan Pradhan (sp2246)</td>
<td></td>
</tr>
<tr>
<td>Seungho Kang (sk2937)</td>
<td></td>
</tr>
<tr>
<td>Shaohan Zhang (sz384)</td>
<td></td>
</tr>
<tr>
<td>Sona Susan Jacob (sj778)</td>
<td></td>
</tr>
</tbody>
</table>
The following report may be shared with external parties and organizations. Since this project is done by students and not a professional firm, the team has to formally notify the external parties and organizations of the following statement:

CUSD (and the CUSD Sustainable Mobility Shelter) is not a professional engineering firm. Therefore, all the deliverables that we produce are only meant to be suggestions or guidelines, which can be used by external parties and organizations at their own discretion. Moreover, before any of the materials provided by CUSD can be implemented, they must get the required validations and approvals (such as PE stamp) of external licensed professionals, which cannot be provided by CUSD. With all the above said, we are also stating that:

We have made reasonable efforts to ensure that the information in the delivery is accurate, but the information is provided for convenience and reference only and without any warranty of any kind. Any reliance that the recipient places on such information is strictly at their own risk. The University is not liable for the recipient’s reliance on the information in this deliverable or errors related to the information in the deliverable. We reserve the right to correct any such errors. No warranty, expressed or implied, is made regarding the accuracy, adequacy, completeness, legality, reliability, or usefulness of any information. This disclaimer applies to both isolated and aggregate uses of the information.

The University provides this information on an "as is" basis. All warranties of any kind, express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, freedom from contamination by computer viruses, and non-infringement of proprietary rights are disclaimed. If you have obtained information, originally created by the University, from a source other than the University, be aware that electronic data can be altered after the original distribution. Data can also become outdated quickly. It is recommended that careful attention be paid to the contents of any data associated with a file.

Recipient AGREES to RELEASE, Cornell University, its’ respective trustees, officers, agents, volunteers, and employees (collectively, “Released Parties”) from any liabilities, damages, expenses, causes of action, claims, or demands of any nature whatsoever, including any claims of negligence related to the recipient’s reliance on the information, research data or findings in this deliverable.

Best Regards,
CUSD Mobility Team Shelter
Table of Contents

Table of Contents ... 3

CUSD Sustainable Mobility Shelter .. 5
 Project Overview .. 5
 Team Composition ... 5
 Stakeholders ... 6

Shelter Design ... 6

Introduction ... 6

Architectural Progress ... 8
 Shelter Footprint .. 8
 Triangular Module Detailing ... 9
 Foundation Connection Method ... 10
 Skin Materials and Method ... 10
 Lighting Interaction .. 11
 Architectural - Next Steps ... 12

Mechanical Progress ... 13
 Define Problem .. 13
 Breakdown / Explore Options .. 13
 Brainstorm / Select Concept ... 14
 Design the Primary Components ... 16
 Develop the Secondary Components ... 17
 Design for Assemblability and Serviceability .. 18
 Design for Manufacturability ... 19
 Prototype / Test Concept ... 20
 Mechanical – Next Steps ... 21

Electrical Progress .. 21
 Connecting to TCAT Bus Proximity API ... 21
 Selecting / Analyzing Electronic Hardware ... 22
 Electrical – Next Steps ... 22
<table>
<thead>
<tr>
<th>Systems Progress</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business or Mission Analysis Process</td>
<td>23</td>
</tr>
<tr>
<td>Stakeholder Needs and Requirements Definition Process</td>
<td>28</td>
</tr>
<tr>
<td>System Requirements Definition Process</td>
<td>30</td>
</tr>
<tr>
<td>Architecture Definition Process</td>
<td>32</td>
</tr>
<tr>
<td>Design Definition Process</td>
<td>34</td>
</tr>
<tr>
<td>Systems - Next Steps</td>
<td>38</td>
</tr>
<tr>
<td>Next Steps</td>
<td>38</td>
</tr>
<tr>
<td>Shelter Masterplan</td>
<td>39</td>
</tr>
<tr>
<td>Introduction</td>
<td>39</td>
</tr>
<tr>
<td>Progress</td>
<td>39</td>
</tr>
<tr>
<td>Analysis Method and Assumptions</td>
<td>39</td>
</tr>
<tr>
<td>Baker Flagpole Evaluation</td>
<td>40</td>
</tr>
<tr>
<td>Kennedy Hall Evaluation</td>
<td>41</td>
</tr>
<tr>
<td>Collegetown at Oak Evaluation</td>
<td>42</td>
</tr>
<tr>
<td>Collegetown at Schwartz Evaluation</td>
<td>43</td>
</tr>
<tr>
<td>Potential New Collegetown Stop Evaluation</td>
<td>44</td>
</tr>
<tr>
<td>Dairy Bar Evaluation</td>
<td>44</td>
</tr>
<tr>
<td>A-Lot Evaluation</td>
<td>45</td>
</tr>
<tr>
<td>Rockefeller Hall Evaluation</td>
<td>46</td>
</tr>
<tr>
<td>Boldt Hall Evaluation</td>
<td>47</td>
</tr>
<tr>
<td>Recommendation for Shelter Location</td>
<td>48</td>
</tr>
<tr>
<td>Research Grants for Shelter Construction</td>
<td>48</td>
</tr>
<tr>
<td>Next Steps</td>
<td>48</td>
</tr>
</tbody>
</table>
CUSD Sustainable Mobility Shelter

Project Overview
The Sustainable Mobility project, under the Cornell University Sustainable Design (CUSD) program and sponsored by Siri Simoncini, aims to revolutionize Tompkins Country's transit network. Utilizing a blend of design thinking and systems engineering, the team focuses on empathetic fieldwork, user-centric design, and system engineering tools and processes.

Team Composition
This diverse team comprises architects, planners, mechanical and aerospace engineers (MAE), electrical and computer engineers (ECE), systems engineers, and other disciplines across both undergraduate and graduate studies. The team operates with two primary sub-teams: Shelter Design and Shelter Masterplan.

- **Shelter Design**: Concentrates on crafting the intricate system for the new bus shelter concept.
- **Shelter Masterplan**: Engages in change management and strategizing for the new bus shelter concept, along with the associated routes.

The organization chart, or the "family tree" (refer to Figure 01), delineates the roles, majors, locations, and leadership positions of team members. This structure facilitates task allocation.
between the sub-teams and manages the diverse skill sets and backgrounds of the large team, both on and off-campus.

Stakeholders
The primary stakeholder, Tompkins Consolidated Area Transit (TCAT), has replaced the previous partnership with Light Green Machines (LGM), a local startup. While working with LGM, the team focused on developing a bus shelter integrated with LGM’s small hybrid bus and exploring business cases for LGM's operations.

However, with the shift to TCAT, the team has redirected its efforts:

- **Shelter Design**: Now focuses on integrating TCAT's bus proximity API into the bus shelter, emphasizing sustainable materials, innovative architectural design, and effective communication of complex information.
- **Shelter Masterplan**: Aims to identify optimal locations, Downtown Ithaca or Cornell University's campus, for the innovative bus shelter.

This shift aligns the project's goals with TCAT's requirements, emphasizing groundbreaking architectural and engineering achievements within the transit network.

Shelter Design
Introduction
Under the guidance of TCAT, the Shelter Design team refined its mission and vision for the bus shelter project. The focus now includes showcasing innovative architecture to revitalize interest in bus transit careers and attract new applicants. Additionally, the team aims to integrate a unique bus proximity API system for customer information while maintaining a commitment to sustainability through the use of eco-friendly materials and technologies, aligning with TCAT's goals.

- **Mission**: Revolutionize the concept of bus shelters by creating a transformative platform that reinvents how we communicate complex information, pioneers novel multifunctional building components that seamlessly integrate mechanical, structural, and electrical functionalities, and redefines the landscape and architecture of the conventional bus shelter.

- **Vision**: Upon encountering our bus shelter, our customers will be captivated by the seamless visual representation of the once intricate bus systems and ignited by the
promise of a sustainable architectural marvel. Our shelter, ingeniously designed to seamlessly assimilate with its natural surroundings, harnesses the beauty of biomimicry, and boasts materials engineered to endure the harshest of natural extremes from the frosty terrain of Alaska to the balmy landscapes of Florida. We aim to leave an indelible impression that fuels inspiration for the future of sustainable architecture, design, and engineering.

Previously, the team debated two architectural concepts: the hub/spoke exoskeleton and the modular puzzle-piece. Despite prior work on both, the team made an executive decision to pursue the modular puzzle-piece concept to align with TCAT's emphasis on innovation and to avoid doubling of work in the development phase.

The project's focus transitioned from the conceptual phase to development phase. Fall 2023 aimed to deliver a comprehensive 'Alpha' design, incorporating electrical, mechanical, and structural systems closely aligned with the chosen puzzle-piece concept. The team set ambitious objectives (see Figure 02) divided among four sub-teams: Architectural, Mechanical, Electrical, and Systems. These objectives created urgency, aiming to transition into prototyping by Spring 2024 and meet Siri Simoncini's milestones for design definition and prototype construction in 2024.

Figure 02: Shelter Design Objectives for Fall 2023
Architectural Progress

Shelter Footprint

The initial phase of the design process involved establishing the size parameters for the shelter, drawing from both local shelter measurements and insights provided by TCAT. To gather comprehensive data, each team member conducted measurements on one to two shelters situated across the campus. Synthesizing this collective information enabled us to derive average dimensions for nearby bus shelters. Utilizing this data as control ranges, we developed a grasshopper script. This script served as a pivotal tool, allowing us to precisely adjust and refine the shelter's size while staying within the predetermined constraints. Figure 03 demonstrates a visualization at scale, utilizing accurate parameters.
The design specifications for the shelter encompass specific dimensions and layout configurations. Each triangular module measures one meter along all three sides. The shelter is envisioned to comprise around 75 of these modules, but this count remains adaptable, subject to potential adjustments in quantity. Structurally, the arrangement consists of eight rows of modules, evenly distributed with four rows on each side. A notable feature within this design is the hollowed-out interior, anticipated to house the lighting components. A distinctive pattern, shown in Figure 04, emerges within the layout as the triangular modules alternate orientation, flipping within rows and between successive rows, introducing an intriguing visual dynamic to the shelter's facade.

Figure 04: Shelter Design – Distinctive Pattern of Use of the Triangular Modules
Foundation Connection Method

The architecture team embarked on addressing the critical aspect of ensuring the shelter's stability, recognizing the necessity of a robust connection between the shelter and its foundations. Brainstorming sessions within the mechanical team were initiated to conceptualize a sturdy foundation and devise preliminary ideas for an effective connector. While the initial concept for this connector is briefly introduced here, comprehensive details regarding this connector's design and functionality can be found in the mechanical section of this report.

Skin Materials and Method

Throughout preceding semesters, the team engaged in deliberations regarding the optimal material for the shelter's exterior skin. However, this semester marked a definitive decision to transition from considering soft, pliable materials like flexible plastic or fabric to a sturdier, less flexible option. Delving into potential materials such as polycarbonate, glass, or Corning's gorilla glass, the team crafted triangular segments intended to encase the shelter's structure securely. These skin modules were meticulously designed to overlay the shelter framework, employing bolt holes on the surface of each module to ensure a secure fit. Implementing a strategic offset of 2 cm between the skin and the underlying triangular module was a deliberate choice. This offset, shown in Figure 05, serves a dual purpose: to prevent the skin pieces from abutting each other due to the structural angles between modules and to create a barrier against rain penetration into the interstitial spaces. The variance in the offset for each skin piece will be achieved by employing varying quantities of spacers, offering a flexible and adaptable approach to maintain the shelter's integrity and weather resistance.

Figure 05: Shelter Design – Offset Between Skin Panels
Lighting Interaction

The lighting interaction embedded within the shelter design serves a dual purpose of assisting both bus drivers and shelter occupants. It functions as a signaling mechanism for bus drivers to determine shelter occupancy and notifies waiting occupants about approaching buses, simultaneously providing adequate lighting (Figure 06).

![Diagram of shelter design]

Figure 06: Shelter Design – Visual Communication Design of the Shelter

The intricate lighting interactions are as follows: Firstly, when the shelter is unoccupied and there's no incoming bus, the lights remain off. Secondly, in the absence of occupants but with an approaching bus, the internal lights switch off while external lights illuminate, intensifying gradually as the bus nears (the team is exploring monochromatic or dual chromatic color schemes). Thirdly, when the shelter is occupied without an incoming bus, the internal lights are on while external lights are off. Lastly, in the presence of occupants and an incoming bus, both internal and external lights are activated. Like the previous scenario, the lights intensify as the bus approaches, with ongoing experimentation on color schemes for optimal effectiveness forthcoming. This sequence of lighting interactions aims to provide essential cues to both bus drivers and shelter occupants, enhancing the overall functionality and user experience of the shelter.
shelter. Figure 07 diagrams the arrangement of LED components, and additional details on technical assembly of the lighting are provided within the mechanical section.

![Diagram of LED Circuits in Triangular Modules](image)

Figure 07: Shelter Design – Integration of LED Circuits into Triangular Modules

Architectural - Next Steps

In the upcoming semester, the team envisions developing a comprehensive video pitch to showcase the theoretical site functionality, providing a tangible visualization of the shelter’s intended operation and features. Looking ahead, a multifaceted plan includes several pivotal tasks. These tasks encompass constructing a full-scale model of select triangular modules alongside a smaller-scale model encapsulating the entire shelter design. Moreover, the team aims to rigorously test the electrical systems, conduct thorough structural analyses, and perform calculations to validate the structural integrity. Efforts will be dedicated to resolving intricate connection details between modules and the skin, addressing the insertion of a "wedge" within the hinge mechanism or connector assembly, and sourcing materials from potential suppliers essential for shelter construction. Simultaneously, the team is poised to explore avenues for securing funding and grants crucial for project realization. Additionally, there is a concerted effort to engage engineering and architecture firms willing to endorse the project upon completion, ensuring its credibility and reliability in the professional domain.
Mechanical Progress

Define Problem
The architecture team's directive to move to a modular puzzle-piece concept set the stage for the team's challenge: translating architectural concepts, depicted in Figure 08, into tangible structural, mechanical, and electrical designs.

Figure 08: Shelter Design – Architectural Vision (Spring 2023)

Addressing this, the primary hurdle emerged—how to constrain a movable puzzle piece in the z-direction while adhering to the aesthetics and simplicity of a puzzle or Lego piece. Additionally, a second major challenge surfaced—creating a structural framework to supply electricity to individual LED lights within each triangular module without any visible wiring, requiring seamless electrical connections between modules without intricate, time-consuming wiring. Moreover, the team grappled with devising an innovative and sustainable manufacturing, assembly, and servicing approach. Design constraints included removing sharp corners for enhanced manufacturability, opting for a sustainable, cost-effective material—preferably organic over metallic—and facilitating individual module removal without dismantling the entire structure for servicing. Amidst these challenges, robustness against environmental elements took precedence, given exposure to New York weather variations—concerns centered around wind, rain, snow, and sunlight. Balancing design innovation with durability became a critical aspect of the project's success in the face of these multifaceted challenges.

Breakdown / Explore Options
To tackle the two major problems at hand, the team initiated a brainstorming session utilizing the System Engineering method known as Concept Fragments. This approach involves dissecting the problem into its individual elements, fostering a multitude of options at the individual level, and pulling together options in hybrid fashion to address bigger problems. Specifically targeting the creation of a constrained Z-direction puzzle piece connection and the routing of electricity devoid of visible wires or individual connectors, the team engaged in intensive brainstorming.
Various strategies and potential solutions were explored and documented as concept fragments, offering a glimpse into the multitude of innovative ideas generated, although the summarized fragments are illustrated in Figure 09, it is not an exhaustive list.

<table>
<thead>
<tr>
<th>Puzzle Piece Style Connection (Constrained in Z-Direction)</th>
<th>No Visible Wires with No Individual Wire Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latches on the Side of Each Module</td>
<td>Contact Pads by Screw/Connection Points</td>
</tr>
<tr>
<td>Flanges Between Triangle and Connector</td>
<td>Wireless Energy Transmission (Tesla Coil)</td>
</tr>
<tr>
<td>Dovetail Joint with Standard Bolt</td>
<td>Mold Wires into Triangular Modules</td>
</tr>
<tr>
<td>Hidden Dowel with Magnets</td>
<td>Incorporate Breadboard Style Connector in Triangular Modules</td>
</tr>
<tr>
<td>Hidden Screw with Magnets</td>
<td>Inductive Charging Embedded in Triangular Modules</td>
</tr>
<tr>
<td>Hidden Dowel with Bolt Driven Wedge</td>
<td>Laser-Based Electrical Transfer</td>
</tr>
<tr>
<td></td>
<td>Conductive Rods Embedded into Modules</td>
</tr>
</tbody>
</table>

Figure 09: Shelter Design – Concept Fragments

Subsequently, post the concept fragment brainstorming phase, team members ventured into individual exploration sessions. Each member took these concept fragments, amalgamating them in distinct ways to craft system-level concepts for the triangular module and connector assembly. This approach empowered the team to fuse disparate fragments creatively, thereby conceiving unique concepts that could be evaluated comprehensively.

The efficacy of the concept fragment methodology lay in its ability to provide a focused approach to deconstructing individual problems within a larger set of challenges. It offered a systematic means to generate diverse options and approaches to fulfill specific functional needs, steering away from the conventional starting point of a blank canvas. Ultimately, the power of this methodology materialized in the synthesis of elements from various problems, leading to the creation of distinctive concepts ripe for evaluation and refinement.

Brainstorm / Select Concept

After developing concept fragments, the team ventured into crafting 15 distinct concepts aimed at resolving the identified problems. To facilitate evaluation, the team then formulated 5 primary design criteria essential for gauging the efficacy of these concepts against the intended objectives. These ranked criteria in order of priority encompassed structural rigidity, particularly in the Z-direction, resilience to environmental elements, aesthetic alignment with the architectural vision, manufacturability at scale, flexibility in integrating LED and architectural skin concepts, and the safety concerning electricity transfer. Utilizing these criteria as a yardstick, the team meticulously evaluated the top five concepts. The evaluation aimed to assess the relative performance of each concept concerning the original design shared in Spring 2023. The outcomes of this evaluative process were condensed into a Pugh Selection Matrix, showcased in Figure 10.
Upon completion of the matrix assessment, Concept #15 emerged as the preferred solution—a hybrid amalgamation derived from multiple iterations. This concept, depicted in Figure 11, featured a dovetail puzzle-style interface with standard bolt connections and robust, thick triangular modules housing concealed wires.
The selection of Concept #15 was substantiated by its structural integrity via the dovetail interface, its alignment with the project's architectural vision, and its adaptability in integrating LEDs and the architectural skin. Nonetheless, a lingering challenge pertained to devising solutions for accommodating varied angles between connector pieces.

Despite this, the team arrived at a tentative architectural blueprint approved by the architecture team, laying the groundwork to delineate primary and secondary components for detailed design. The team split tasks to delve deeper into the intricacies of the design, concentrating on component specifics, serviceability/assemblability, and manufacturability considerations to advance the project toward its detailed design phase.

Design the Primary Components

Despite the selection of the architectural design, the team encountered several lingering concerns around the primary components of the triangular module and connector assembly. Challenges persisted in housing the theoretical electrical system, ensuring the requisite rigidity of connector pieces, accommodating multiple angles within the connectors, and establishing a robust assembly. Furthermore, refining the visualization of fixtures for the glass skin atop the panels remained essential based on inputs from the architectural team.

To address these complexities, the team opted for refined designs within Fusion 360. The modular panels underwent a structural alteration, being split into halves to accommodate internal electrical systems. These halves were securely fastened using bolts, simultaneously securing the glass skin above the panels.

In response to feedback from mechanical and electrical teams, the internal design of the panel halves was tailored to accommodate six wires—four designated for the external RGB lighting system and two for internal LED illumination. The wire layout was optimized to conform to the triangular panel shape, allowing clearance near the dovetail sections for connector pin connections. Additionally, alterations were made to the output points' orientation, shifting from vertical to horizontal for enhanced connectivity between the panel and the connector.

The connector underwent a redesign, now fitting directly into the dovetail at the panel's bottom. A securing plate was introduced over two pins penetrating the top half of the panel to firmly affix the connector. Addressing the need for multiple angles, the connector was bifurcated with an angle-locking joint incorporated between the halves and within the connector structure. To reinforce the structural integrity of the connectors, custom wood wedges were introduced between the halves, tailored to specific angles. These wedges aimed to prevent bending under
loads and safeguard the entire structure from buckling. The resultant design of the primary components is shown in Figure 12.

![Figure 12: Shelter Design – Design of Triangular Module and Connector Assembly](image)

Develop the Secondary Components

The team grappled with the challenge of establishing a sturdy foundation for the shelter without resorting to conventional materials like concrete, aligning with sustainability goals. An innovative idea surfaced—utilizing a complex gravel setup. The proposal involved evenly spaced columns descending from the shelter to the base of the gravel pit, featuring broad plates extending laterally beneath the gravel. However, linking the triangular modules with secondary components to these columns posed a significant challenge.

An initial concept for the foundational mount emerged from Fusion 360 and depicted in Figure 13—a block with a groove for the module to slot into, secured by a screw-on cap. Though
Design for Assemblability and Serviceability
The team commenced exploring the skin-to-module connection by determining the size and coverage of each skin unit and its relation to the modules. A critical consideration was the skin's assemblability and serviceability in case of damage to the module. Initial prototypes assessed the skin covering multiple modules, but concerns arose about the complexity of replacing larger segments if minor damage occurred.

Upon analysis, the team concluded that a more optimal solution involved individual connections for each triangle module to the skin, ensuring simple panel removal. This approach standardized the skin panels, with only the angle of their attachment to the module requiring alteration. Bolts were selected as the connecting medium at varying heights to facilitate individual access to each module. This adaptable assembly method enables easy detachment and maintenance without interference from neighboring modules, facilitating repairs and upgrades to the technical components. Furthermore, the alternating heights of the panels contributed to structural stability by distributing connections across different levels, enhancing the overall structure's resilience against diverse forces.
The team opted for a nyloc nut for the skin-to-module connection, considering its mechanical and functional advantages. The nyloc nut's nylon insert plays a pivotal role, preventing vibrational loosening by acting as a prevailing locking mechanism. This feature is crucial in scenarios with mechanical stresses or vibrations, ensuring the connection remains secure. Moreover, the self-locking nature of the nylon insert enhances the system's reliability, eliminating the need for secondary locking devices or adhesives, streamlining the assembly process, and reducing potential errors. This simplicity in design and assembly streamlines manufacturing processes, contributing to increased efficiency. The resultant design for the skin to module connection is shown in Figure 14.

Figure 14: Shelter Design – Skin Attachment (Assemblability / Serviceability)

Design for Manufacturability
The team, dedicated to Cornell University Sustainable Design (CUSD), extensively researched manufacturing materials and methods to align with sustainability principles across the skin, triangular module, and connector assembly components.

Initially, for the skin, glass was favored over plastics due to its resilience against discoloration in direct sunlight. However, a more durable solution was sought, leading to collaboration with Corning, a reputable local supplier. The team explored the use of 2mm thick gorilla glass,
commonly employed in watch and phone faces. This glass material also offered options for frosting or etching, aligning with architectural preferences.

Regarding the triangular module, organic materials were considered, prioritizing suitability over excessive mechanical strength. Research led the team to investigate hemp composites utilized in the automotive industry, aiming to employ these composites for molding the module's two halves. Further exploration is underway, with a focus on companies like Flexform Technologies, known for manufacturing similar components for the automotive sector.

In addressing the connector assembly, the team encountered a two-fold challenge. Prioritizing structural integrity for forces traversing through the connector, materials such as Aluminum or stainless steel were recommended. Following an extensive feedback session with Professor Fabien Royer, the team incorporated wood into the connector assembly as a wedge. This decision was influenced by wood's commendable compressive strength, ease of on-site modifications during assembly, and cost-effectiveness.

Prototype / Test Concept

The team's initial focus was on creating a prototype for the electrical system, serving as a foundational concept for subsequent mechanical designs. The first prototype took shape as a basic breadboard circuit, simulating the concept of "rails" designated for various types of connections required for power or signal transfer among modules. This approach aimed to ensure consistent production of modules that could seamlessly connect, irrespective of their orientation. The successful demonstration of this concept was evident as depicted in Figure 15, where the illuminated LEDs validated their functionality. Further prototyping remains necessary to refine the integration of RGB LEDs into the system.

![Figure 15: Shelter Design – Proof of Concept (Breadboard Style Connections for LED)](image-url)
Mechanical – Next Steps
Transitioning into the upcoming semester, the mechanical team aims to seamlessly collaborate with the electrical team, forming a unified engineering front to integrate both electrical and mechanical components effectively. A key challenge currently faced involves integrating wires or printed circuit boards (PCBs) into the mold design, alongside configuring multiple angles within the connector assembly. Specifically, the team is tasked with establishing connections for six different traces between each triangular module and the connector assembly, while also accommodating one or two LED strips within a standardized fitting or harness. Moreover, a critical concern lies in setting and securing five to six different angles in the architectural structure without introducing additional part numbers or complexities.

The team is exploring alternative approaches for powering the LEDs, drawing inspiration from examples like the TIZIO lamp. However, this exploration requires substantial prototyping and testing resources, presenting a dilemma regarding its viability and resource allocation. The team's focus on resolving electrical challenges has somewhat diverted attention from pressing mechanical issues, particularly angle locking mechanisms. With a shift in resources towards addressing electrical complexities, the team anticipates dedicating more effort to tackling the outstanding structural and mechanical challenges. The aim is to embark on an analysis-led design approach, prioritizing a comprehensive resolution to these open issues.

Electrical Progress
Connecting to TCAT Bus Proximity API
The electrical team initially encountered challenges with the available bus proximity APIs, facing limitations in accessibility and real-time information provision. After exploring options like the Transitland website's free download API, incompatible with their software, and a subscribe-based API unable to offer real-time data via their preferred platform, the team sought an alternative solution. They coordinated with the TCAT IT department to explore viable alternatives and were introduced to "Swiftly," a third-party bus data provider. Following consultations and assistance from TCAT, the team engaged with Swiftly's technical support to secure an API key compatible with their preferred programming environment, utilizing vscode with Python. This API enables the retrieval of real-time bus predictions specifically tied to the shelter ID, updating at the very worst every 30 seconds. Below is Figure 16 depicting the successful connection to TCATs Bus Proximity API and the output for the Rockefeller Hall stop for each bus in transit (time from shelter in seconds, time from shelter in minutes, bus usage, bus route).
Selecting / Analyzing Electronic Hardware

The team conducted a thorough analysis encompassing 75 to 150 LEDs configured in a parallel circuit, resulting in a recommendation to pursue either 12V or 24V LED strips for the project. The evaluation highlighted distinct characteristics of each voltage option: the 24V strips enabling longer runs, up to 7 meters, albeit posing challenges with sharp turns, while the 12V strips afford the flexibility for sharper turns but typically limit runs to approximately 5 meters.

The analysis indicated that voltage drop, while a consideration, wouldn't significantly impact the system, given the consistent voltage across LEDs in a parallel setup, each facing an approximate 3V voltage drop. However, the critical aspect for the parallel circuit centers on the current rating of the LED strips. Anticipating an increase in current for every LED integrated into the system, the team recommended LED strips falling within the range of 14 to 28 mA ratings to effectively accommodate the structural requirements.

Electrical – Next Steps

This past semester posed significant challenges for the electrical team due to various constraints stemming from work and academic schedules. Despite these hurdles, the team managed to establish an API connection, providing valuable insights for LED architecture decisions. However, progress fell short of implementing a logic circuit.

Heading into the upcoming semester, the primary focus for the team revolves around constructing a logic circuit that aligns with the visual communication design guidelines outlined in the systems section. This entails creating an electronic control module capable of interfacing with the bus proximity API via Swiftly. The aim is to utilize this API data to regulate a circuit responsible for communicating bus proximity and occupancy through speakers and lights.

Recognizing the paramount importance of electrical design in the Spring 2024 semester, the team intends to seek additional electrical resources. They plan to diligently simulate the logic circuit using Proteus, a tool facilitating API connections and circuit simulations. Subsequently, the team aims to concentrate on prototyping the entire electrical system independently from the
mechanical components. Small-scale testing on a breadboard level will be employed, simulating bus proximity and occupancy at a designated campus bus shelter stop. This approach allows for evaluating API functionality with arriving buses and sensor use concurrently, verifying the system's operation.

Systems Progress

Business or Mission Analysis Process

The project on Sustainable Mobility has been ongoing for over four years in collaboration with the primary stakeholder, Light Green Machines (LGM), originally aimed at creating an electronic hub for hybrid buses to charge at stops and accommodate other devices like bikes and electronics. However, due to a shift in stakeholders from LGM to the Tompkins Consolidated Area Transit (TCAT), the team revisited the project's initial mission analysis at the onset of the semester.

The team followed the Business or Mission Analysis Process outlined by the International Council on Systems Engineering (INCOSE) handbook. The purpose of this process is to define the business or mission problem or opportunity, characterize the solution space and determine potential solution classes that could address a problem or take advantage of an opportunity. Therefore, to understand TCAT's perspective, they conducted a Voice of the Customer (VOC) session, revealing several key insights:

TCAT emphasized the need for an innovative and technologically advanced bus shelter to attract employees and customers, signaling revitalization in the industry. They prioritized customer safety by suggesting integration with emergency services, offering shelter to larger groups, ensuring shelter lighting when occupied, and aiming to deter loitering. Moreover, TCAT questioned the necessity of seats in the bus shelter, considering the potential for increased loitering and reduced shelter capacity. They also expressed interest in communicating bus proximity data uniquely through the shelter via an API integration.

Additionally, the team acknowledged previous empathy field studies, finding that the user perspective, particularly the need for timely bus arrival information, remained consistent. A common scenario among Cornell's population involved waiting in harsh weather conditions without timely information about bus arrivals. One such example that was used to convey this message:

"Imagine it's the middle of winter and you just parked in the A-Lot. It's super cold and you don't want to get out of your warm car, and you are in the back of the parking lot."
You want to time when you come to the bus shelter but if you wait until the bus arrives you are too late. You also are wearing gloves so getting to the app on your phone to tell you how far the bus is would be a bit of work. You wish the bus shelter would give you some kind of sign that the bus is nearing the shelter, so you know exactly when to make the trek to reduce time in the elements.”

To capture TCAT and user requirements, the team constructed a context diagram (see Figure 17) to better understand the solution space and outline interfaces with various stakeholders, including homeless populations, emergency services, facilities services, transit services, as well as unexpected interfaces like users' bikes, electronics, and animals.

![Figure 17: Shelter Design – Context Diagram](image)

Subsequently, the team ventured into developing use cases and refining them from an extensive list to a more manageable minimum viable product. To show the relationships, the team constructed use case diagrams representing user, bus, and environmental interactions with the shelter (see Figures 18, 19, and 20). The team used these diagrams to start a conversation on the intent of the shelter and to identify the minimum viable product (purple) and additional features (blue) desired by customers and the transit service. Through this, the team identified crucial
interactions between users and the bus, such as the driver's need to assess shelter occupancy before stopping.

Figure 18: Shelter Design – Use Case Diagram (User Interactions)

Figure 19: Shelter Design – Use Case Diagram (Bus Interactions)
Transitioning to SysML modeling using CAMEO, the team faced collaboration challenges but found advantages in connecting functional and logical architectures. Their draft SysML use case diagram (see Figure 21) exemplifies their efforts to establish digital thread traceability among various artifacts and trim down the use cases.
Figure 21: Shelter Design – Use Case Diagram (SysML)
Having completed the context and use case diagrams, the team gained a comprehensive understanding of the problem space. The next step involved breaking down stakeholder needs and requirements to further advance the project.

Stakeholder Needs and Requirements Definition Process

Following a significant redefinition and rescope of the problem space after four years of directional shifts, the team embarked on the Stakeholder Needs and Requirements Definition Process. This process, according to the INCOSE handbook, aimed to establish stakeholder requirements for a system capable of meeting user and other stakeholder needs within a specific environment.

The team's initial step involved dissecting the functional aspects of the bus shelter. They utilized an IDEF0 diagram to outline the shelter's fundamental functions along with its inputs, outputs, resources, and controls. They started with the A0 diagram (see Figure 22), which highlighted the core function of sheltering users.

![Figure 22: Shelter Design – IDEF0 Diagram (A0 Diagram)](image)

Through this diagram, the team delved into sub-functions, understanding the necessity for lighting and audio to communicate bus proximity and explored the resources required to achieve the desired outputs. Notably, they emphasized the significance of easily replaceable components to facilitate modular repair without disassembling the entire structure. Subsequently, sub-functions were detailed in Figure 23 using the same IDEF0 format.
Using this IDEF0, the team identified three primary sub-functions essential for any bus shelter to qualify as a shelter: locating a bus stop, providing covering, and protecting the user. Additionally, they pinpointed two unique sub-functions—communicating bus proximity and occupancy—that distinguished this shelter from conventional ones. Lastly, the team identified a sub-function of managing energy usage to support the communication aspect. These functions aligned with the stakeholder's desire for innovation, aiming to draw attention by conveying complex information uniquely.
Transitioning to SysML near the end of semester (still work in progress), the team refined the functional architecture (see Figure 24), consolidating functions like communication, adding temperature regulation (reduce wind chill), and reworking various others.

![Figure 24: Shelter Design – Functional Diagram (SysML)](image)

This functional diagram delineated major shelter functions, illustrating the breakdown between minimum viable product (MVP) and extra features, facilitating potential expansion based on customer verification. It aided in identifying function gaps and establishing alignment for each major function's composition. These SysML diagrams made it simple to translate functions into logical architecture and then decompose them further through activity diagrams to define the design.

Having completed the Stakeholder Needs and Requirements Definition Process, the team discerned the system's functional requirements, recognizing both the fundamental needs of a bus shelter and its distinguishing characteristics. Now, the focus shifted towards articulating specific requirements, readying them for communication to the broader design and architecture teams. These requirements would be expressed as 'shall' statements, forming the basis for defining the system comprehensively.

System Requirements Definition Process

In steering the mechanical and electrical teams toward developing the system and component designs, the team engaged in crafting system-level requirements through the System Requirements Definition Process, aligning with the INCOSE handbook's guidelines aimed at translating user-oriented needs into a technical framework.

Initially, the team scrutinized the highest priority use cases dictated by the functional and use case diagrams. Subsequently, they disentangled the user's perspective of the system into technical requirements, employing a Use Case Behavioral Diagram (UCBD).
From an amalgamation of 18 distinct use cases, the team constructed 9 UCBDs. These diagrams functioned as scenarios, illustrating the roles' actions within specific situations, effectively transforming system actions into shall statements that formed the crux of the system requirements. The script-like methodology utilized in the UCBDs followed a sequence of initial conditions, role actions, and concluding end conditions, incorporating notes and assumptions where necessary. Two influential UCBDs, pivotal in shaping the system requirements, are depicted in Figure 25.

Figure 25: Shelter Design – Use Case Behavioral Diagrams (2 of 9 Completed)

Drawing insights from these UCBDs and collaborating closely with the Architecture team, the team delineated an originating requirements list comprising 51 items. Each requirement was accompanied by its rationale and allocation to specific functions. Additionally, the Architecture team contributed 3 interface requirements based on their analysis. These foundational requirements were swiftly conveyed to the engineering teams as they commenced their mechanical and electrical design. These requirements were bounded by various constants managed by the systems group, ensuring control and constraint within the system. A comprehensive view of the full requirements list and the governing constants defining the system is depicted in Figures 26 and 27.
Figure 26: Shelter Design – System Requirements

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Value</th>
<th>Units</th>
<th>Estimated</th>
<th>Actual</th>
<th>Start Date</th>
<th>End Date</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>signal visibility distance</td>
<td>400</td>
<td>feet</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>This is the maximum distance one could walk within the scope of concern from shelters to still make the buds.</td>
</tr>
<tr>
<td>signal audibility distance</td>
<td>400</td>
<td>feet</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>This is the maximum distance one could walk within the auditory range of shelter and still make the buds.</td>
</tr>
<tr>
<td>max. water level</td>
<td>24/36</td>
<td>meters</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>Shouldn't be more than 24/36 meters from TDF to ensure safety as a component requirement for tight.</td>
</tr>
<tr>
<td>max. wind within shelter</td>
<td>7</td>
<td>mph</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>https://www.weather.gov</td>
</tr>
<tr>
<td>maximum temperature range</td>
<td>50°C</td>
<td>C</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>Protect against 100% direct and 50% indirect exposure to sunlight.</td>
</tr>
<tr>
<td>max. pressure fluctuation</td>
<td>80</td>
<td>PSI</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>Protect against 100% direct and 50% indirect exposure to sunlight.</td>
</tr>
<tr>
<td>max. water level</td>
<td>24/36</td>
<td>meters</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>https://www.weather.gov</td>
</tr>
<tr>
<td>max. wind within shelter</td>
<td>7</td>
<td>mph</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>https://www.weather.gov</td>
</tr>
<tr>
<td>maximum temperature range</td>
<td>50°C</td>
<td>C</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>Protect against 100% direct and 50% indirect exposure to sunlight.</td>
</tr>
<tr>
<td>max. pressure fluctuation</td>
<td>80</td>
<td>PSI</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>Protect against 100% direct and 50% indirect exposure to sunlight.</td>
</tr>
<tr>
<td>max. water level</td>
<td>24/36</td>
<td>meters</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>https://www.weather.gov</td>
</tr>
<tr>
<td>max. wind within shelter</td>
<td>7</td>
<td>mph</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>https://www.weather.gov</td>
</tr>
<tr>
<td>maximum temperature range</td>
<td>50°C</td>
<td>C</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>Protect against 100% direct and 50% indirect exposure to sunlight.</td>
</tr>
<tr>
<td>max. pressure fluctuation</td>
<td>80</td>
<td>PSI</td>
<td>Y</td>
<td>11/3/2020</td>
<td>11/3/2020</td>
<td>Team</td>
<td>Protect against 100% direct and 50% indirect exposure to sunlight.</td>
</tr>
</tbody>
</table>

Figure 27: Shelter Design – Requirement Constants

Concluding the System Requirements Definition Process, the team disseminated system-level requirements to the engineering teams. However, the next phase necessitated the inception of the logical and physical architecture of the system. This step aimed to enable the allocation of requirements to tangible, physical solutions, further advancing the design and development trajectory.

Architecture Definition Process

With the system requirements in place, the team shifted focus towards the intricate task of allocating these requirements and functions to the diverse subsystems and components
constituting the system, following the Architecture Definition Process. Defined by the INCOSE handbook, this process aims to generate and evaluate system architecture alternatives, aligning stakeholder concerns with system requirements while presenting these in coherent and consistent views.

Over the past semesters, the architectural form has persisted despite a change in stakeholders. However, the functional aspect of the shelter underwent significant transformation. The primary focus shifted towards conveying complex information in an intuitive manner for users, shaping the shelter's functionality while maintaining its architectural vision. The architectural form and the decision making and integration with engineering is discussed above in the architectural section.

The functional architecture underwent finalization through a mechanical design process. Employing concept fragments, brainstorming techniques, and tools like the Pugh matrix as documented in the mechanical section, the team identified conceptual architectures of the triangular building blocks and their interconnections within the overall structure. This process addressed mechanical constraints from previous semesters (constraining in the z-direction with a puzzle-piece concept) while initiating steps towards meeting the sponsor's vision of seamless assembly and invisible wire design.

Resulting from this amalgamation of physical and functional architecture was the logical architecture diagram (see Figure 28). While still a work in progress, this diagram delineated the breakdown of logical components within the shelter. It served as a guide to identify gaps, align subsystem compositions, and highlight key functionalities such as internet connectivity for bus API integration and the necessity for multiple modes of lights to communicate occupancy and bus proximity.

![Figure 28: Shelter Design – Logical Diagram (Subsystems / Components using SysML)](image-url)
Having defined the logical and functional architecture, the team prepared to delve into detailed
design work, marking the project's transition from the Concept Stage to the Development Stage
according to the INCOSE handbook. This shift in focus would center on integration and design
activities at the lower levels of the System Engineering Vee-Diagram, marking a pivotal phase in
the project's evolution.

Design Definition Process

Entering the Development Stage, the team split efforts into two primary streams, honing in on
detailed design work concerning the mechanical structure and visual communication via the
Design Definition Process. The Design Definition Process, in accordance with the INCOSE
handbook, aimed to furnish comprehensive data and insights about the system and its
components, ensuring implementation aligns with the defined architectural entities.

In the mechanical domain, as detailed previously in the mechanical section, the team
concentrated design efforts on aspects crucial to structural integrity, manufacturability, wire
visibility, and the connection of triangular building blocks. Special emphasis was placed on
accommodating two types of lights—one RGB and one non-RGB LED

Concurrently, the systems team directed their focus toward visual communication, assisting the
electrical team in devising design guidelines before crafting electrical circuitry. They utilized
Functional Flow Block Diagrams (FFBD) to gain an initial understanding of functions such as
Communicating Occupancy, Communicating Proximity, and their resultant Manage Energy
Usage, showcased in Figures 29, 30, and 31.

![Shelter Design – Functional Flow Block Diagram (Communicate Occupancy)](image)

Figure 29: Shelter Design – Functional Flow Block Diagram (Communicate Occupancy)
While these diagrams laid a foundation for communicating the unique functions of proximity and occupancy and their interdependencies, they lacked the detailed sequencing sought by the electrical team. To address this, the team resorted to activity diagrams, illustrating logical flows and sequences based on the defined logical architecture from the Architecture Definition Process. Figures 32 and 33 depict activity diagrams outlining the sequences for these sub-functions.
Figure 32: Shelter Design – Activity / Sequence Diagram (Communicate Occupancy)

Figure 33: Shelter Design – Activity / Sequence Diagram (Communicate Proximity)
These activity diagrams delineated inter-subsystem activities, logical behavior, and lower-level functional breakdowns. They effectively conveyed the envisioned interactions concerning proximity and occupancy data with speaker and lighting systems, outlining specific system responses in various scenarios. Utilizing this information, the architecture team crafted Figure 34 to convey intentions of communication system to stakeholders during the Design Definition Process.

Figure 34: Shelter Design – Visual Communication Design (Simple)

Further work remains in the Design Definition Process, especially in refining detailed design aspects within the mechanical structure and the electrical control system. Design iterations and refinements are anticipated in the next semester, with a significant focus on scrutinizing failure modes and risks via analysis and prototyping within the System Analysis and Implementation Processes.
Systems - Next Steps
The semester marked a pivotal success for the systems facet of the project, despite the substantial shifts in mission, problem statements, and stakeholder dynamics. The team adeptly navigated these changes, efficiently reworking stakeholder needs, requirements, and the architectural framework to align with the updated project trajectory. However, looking ahead, substantial work remains to consolidate and refine the logical architecture while continuing to enhance the detailed design. The forthcoming semester will prominently feature a concerted effort to streamline functions, use cases, requirements, subsystems, and componentry, ensuring a more cohesive system framework.

To expedite progress and ensure seamless integration, the team plans to merge the mechanical and electrical aspects, fostering a harmonized engineering team. This integrated approach will facilitate swifter advancement in design endeavors, with a keen focus on delineating electronic hardware implications on the mechanical framework and the overall system dynamics. Additionally, a significant emphasis will be placed on formulating a comprehensive test plan for the system. This plan aims to drive analysis-led design work, aiding in the identification of potential risks through a meticulous Failure Mode and Effects Analysis (FMEA). These proactive measures are crucial before embarking on the implementation process and the production of drawings and components. Central to the upcoming tasks is the pivotal role of the systems team in facilitating the integration of all system aspects within the overarching vision. Their task involves aligning the engineering design team to ensure a holistic and cohesive system approach that encompasses all elements of the project's envisioned outcome.

Next Steps
The team has now solidified both the physical and functional architecture, marking a pivotal transition from Concept to Development phase, emphasizing a detailed examination of component interfaces and component design. Although primary architectural decisions have been settled, several lingering queries persist around secondary functions, such as bike storage and bus identification placement, requiring further consideration from an architectural standpoint. However, the impending focus for the next semester centers on achieving a comprehensive and finalized electrical and mechanical design, aiming to address all outstanding queries while commencing significant testing and in-depth analysis. The team aspires to construct a scaled prototype using akin materials to conduct a meticulous system check, albeit potentially downscaled, offering an opportunity to scrutinize both mechanical components and electrical logic.
The team's primary emphasis heading into next semester is directed toward small-scale prototyping and testing, essential for evaluating design efficacy and logic functionality. The success of the upcoming semester hinges on the sequential completion of numerous small tasks, enabling the progression toward larger-scale models of components. This proactive approach aligns with the team's strategy to remain aggressive and agile, steering efforts towards realizing a functional prototype. The ultimate objective is to secure funding to initiate production, aiming to deploy at least one full-scale system within a specified location detailed in the Shelter Masterplan section, prominently within the Cornell Campus.

Shelter Masterplan

Introduction

The Shelter Masterplan team has dedicated preceding semesters to collaborating with diverse stakeholders in the City of Ithaca and Tompkins County, laying the groundwork for the integration of a hybrid-electric shuttle bus into Ithaca's transportation grid. Initial efforts were channeled into redeveloping strategies for the Gadabout on-demand paratransit service. Furthermore, the team undertook initiatives to establish a direct shuttle route linking the Ithaca Tompkins County International Airport and Cornell University. However, this semester witnessed a shift in focus toward specific bus stop analysis, a strategic pivot aimed at complementing the ongoing design endeavors of the Shelter Design team. This recalibration in objectives aimed to deepen the understanding of specific bus stop dynamics, aligning seamlessly with the comprehensive design work underway within the Shelter Design team.

Progress

Analysis Method and Assumptions

The team embarked on a comprehensive evaluation of TCAT's extensive network, encompassing numerous routes and hundreds of stops across Tompkins County. This evaluation aimed to assess existing stops and identify potential locations for a new shelter, particularly focusing on stops proximate to or on the Cornell Campus. Eight specific bus stops—A Lot, Baker Flagpole, Collegetown at Oak, Collegetown Schwartz, Collegetown Proposed, Dairy Bar, Kennedy Hall, and Rockefeller Hall—were meticulously analyzed based on a set of eight criteria. These encompassed geographical coordinates, served routes, ownership, presence of existing shelters, ADA accessibility, infrastructure context, nearby geographical features, and areas of interest. To augment the data, site visits were conducted to observe user interaction with shelters and amenities at these stops.

Employing Microsoft Excel for data organization, the team collated and categorized the gathered information. Subsequently, this data was visualized and presented via a Story Map created in
ArcGIS (Link). Additional considerations were factored into this evaluation, including rider usage data, existing infrastructure, and the identification of specific focus stops on the Cornell Campus. The team also highlighted the significance of ridership statistics (shown in Figure 35), illustrating bus boardings per stop based on the most recent available data from Spring 2022. Moreover, the presence or absence of existing shelters at various stops, particularly within the Cornell Campus vicinity, was carefully considered in the selection process. This culminated in the identification of a smaller subset of focus stops on the Cornell Campus that were subjected to further scrutiny and evaluation to determine the feasibility of installing new shelters.

Figure 35: Shelter Masterplan – Ridership Statistics by Stop (Larger Bubble More Riders)

Baker Flagpole Evaluation

- Ownership: Cornell
- Existing Shelter: No
- ADA Accessible: Yes

Baker Flagpole (shown in Figure 36) is West Campus' main weekend and night stop, adjacent to Libe Slope and Lyon Hall on Cornell property. It is predominantly used by nighttime and
weekend riders on route 92 and weekend riders on route 30. It receives hourly frequencies throughout the night and half-hourly frequencies from 7:00 am till 10:00 pm on weekends. The stop features ADA-accessible 5-foot-wide sidewalks, two midblock crosswalks, bus pullouts, nearby electrical hookups, and ADA-accessible connections to West Campus. It currently lacks any shelters, lighting, or rider amenities, and the crosswalks are missing detectable warning strips. Given the high volume of nighttime riders, this stop would especially benefit from added lighting and shelters. While Libe Slope constrains the northbound stop’s footprint - requiring a retaining wall for shelter construction - the southbound stop could fit a shelter.

![Image](image.png)

Figure 36: Shelter Masterplan – Baker Flagpole

Kennedy Hall Evaluation
- Ownership: Cornell
- Existing Shelter: Yes
- ADA Accessible: Yes

Kennedy Hall Stop (shown in Figure 37) is the busiest bus stop near Ag Quad, mainly serving students who have classes around on weekdays. The bus service provided by 12 routes starts from 7 am to 10 pm on weekdays and Saturdays and from 8 am to 7 pm on Sundays. The primary interests of this area include Bus Stop Bagels, Trillium Dining, CALS, and Dyson School. So far, the stop has a concrete-grounded shelter that has five seats, which are fixed to the concrete ground by bolts, and shielded space inside at two sides. The shielded space at each side is potentially enough to accommodate a wheelchair. Thus, the size of this shelter is larger than the majority of on-campus ones. Its seats are at the back of the shelter with enough width for small-sized people to sit and expand their legs with a backpack on. The stop has one lighting but its functionality at night needs more observation. The glass shield at four sides of the shelter leaves gaps at the bottom, enabling ventilation while providing good visibility of the coming buses. Overall, the current shelter at Kennedy Hall stop is functioning decently with riders sitting
inside of it. As the land is under the ownership of Cornell University, this shelter has been there for years, and this stop is rather popular, we expect replacing the old shelter to be relatively possible and more helpful for the promotion of the newly designed stop.

Figure 37: Shelter Masterplan – Kennedy Hall

Collegetown at Oak Evaluation
- Ownership: Cornell
- Existing Shelter: No
- ADA Accessible: Yes

Collegetown at Oak (shown in Figure 38) is currently one of the three primary stops in Collegetown. It serves the area closest to the campus, with primary interest spots including Schwartz, CTB, IBC, and many other restaurants. Additionally, it's a popular living area for many upperclassmen students. Since there likely isn't enough room at the current location, we propose relocating the stop to the nearby roundabout, approximately 10 feet away. This change would provide adequate space for a full-sized shelter. We believe that Cornell currently owns the existing stop, but we would need to investigate the ownership of the proposed new location.

From our observations, people tend to stand at this stop, likely due to the frequency of the bus routes it serves and the current lack of a bench for seating. Not much room for a bus stop. Mostly cement and IBC uses most of the area outside for seating.
Collegetown at Schwartz Evaluation

- Ownership: Cornell
- Existing Shelter: No
- ADA Accessible: Yes

Collegetown at Schwartz (shown in Figure 39) is currently one of the three primary stops in Collegetown. It serves the area closest to the campus, with primary interest spots including Schwartz, CTB, IBC, and many other restaurants. Additionally, it's a popular living area for many upperclassmen students. There is currently no shelter, but there is a small bench. While this stop has enough room for a shelter, we could also relocate this stop to the nearby roundabout, approximately 15 feet away. If not, there is still plenty of room at the current location. We believe that Cornell currently owns the existing stop, but we would need to investigate the ownership of the proposed new location. From our observations, people tend to stand at this stop, likely due to the frequency of the bus routes it serves and the size of the current bench.
Potential New Collegetown Stop Evaluation

- Ownership: Cornell
- Existing Shelter: No
- ADA Accessible: Yes

This is the location of the proposed new Collegetown at Oak stop (shown in Figure 40). It is currently a roundabout circle with shrubs and cement. This would be able to accommodate a new shelter.

![Figure 40: Shelter Masterplan – Potential New Collegetown Stop](image)

Dairy Bar Evaluation

- Ownership: Cornell
- Existing Shelter: Yes
- ADA Accessible: Yes

The Dairy Bar stop (shown in Figure 41) is an important stop on Cornell’s eastern side of campus, servicing routes used by students, faculty and staff alike- the routes 20, 21, 32, 37, 40, 43, 51, 52, 65, 67, 81, and 82. The most trafficked route is the 81, with the 82, 32, 37, and 51 being other important urban routes. The stops on both the north and south sides of the street are situated on property owned by Cornell. Both stops appear to be ADA complaint, with curb cuts and bump strips. The geography of the site on the north side of the street comprises a relatively flat area situated on the edge of a slope. Meanwhile, on the south side, there are permeable pavers covering a flat surface next to a gently sloped green area. The shelter on the north side is older, with the pyramid array style of roof, while the shelter on the south side is newer with an open design that does not provide great coverage from the elements. The areas of interest near the stop include Stocking Hall and the Dairy Bar, the botanic gardens, the soon-to-be-opened Atkinson Center, and the athletic fields used for games. Concerns for replacing these shelters should focus on their adequacy for protecting from the elements, as well as providing
information for upcoming arrivals and departures, as both sides of the street are lacking these technological enhancements.

A-Lot Evaluation

- Ownership: Cornell
- Existing Shelter: Yes
- ADA Accessible: Yes

The A-Lot (shown in Figure 42) is one of the most important stops in the TCAT system when in use Monday through Friday. The stop is only served by one route, the intra-campus 81 shuttle, but receives frequent service from 5am to 7pm every weekday. The stop is located in an important parking lot for faculty and staff who drive to campus and take the bus to their final destination. The parking lot itself is home to two identical looking bus stops, the lower stop and the upper stop. The 81 will frequently sit at the lower stop before setting out for another loop around campus to the Vet School. Both the existing shelters are spacious and the shelters embed well into the parking lot. The shelters are quite dated, however, with the interiors appearing quite dilapidated. In that sense, a new shelter at both the lower and upper stop, or a single stop in the middle serving the entire A Lot, would be an immense improvement over the current situation.
Figure 42: Shelter Masterplan – A-Lot

Rockefeller Hall Evaluation

- Ownership: Cornell
- Existing Shelter: Yes
- ADA Accessible: Yes

The Rockefeller Hall stop (shown in Figure 43) is one of the main TCAT stops on central campus. The stop serves destinations on and near the Arts Quad, including Baker Lab, Rockefeller Hall, the PSB, Goldwin Smith Hall, Lincoln Hall, and Sibley Hall, among others. There are three nearby cafés: Green Dragon, Temple of Zeus, and Goldie’s. The stop is owned by Cornell. In terms of user behavior, riders typically sit and wait for the bus on the small brick wall next to the bus shelter. When both the wall and the shelter are full, people stand around on the sidewalk to wait. The shelter is located below a steep slope to access Rockefeller Hall and the PSB, which may cause accessibility issues that Cornell would need to address. The existing shelter is of the older, pre-NCRE style, and often fills very quickly. A new, larger shelter would certainly be well used by students returning to North Campus, as well as medium-distance commuters. There is also ample space for a larger shelter, with extra space existing between the current shelter and the bike racks.
Boldt Hall Evaluation
- Ownership: Cornell
- Existing Shelter: No
- ADA Accessible: Yes

Cornell’s Boldt Hall (shown in Figure 44) is a highly utilized stop for west campus residents. This stop is served by TCAT’s route 10, which runs weekdays 7am-5pm with high frequencies. It also serves route 36. This stop is unused on the weekends. This stop currently doesn’t have a shelter attached to it and has a steep-cross slope. Any shelter would have to be constructed on a concrete pad installed in the grassy strip between the road and the sidewalk. This would require significant leveling or a dynamic shelter to be installed.
Recommendation for Shelter Location

In the team's assessment, the A-Lot and Rockefeller Hall stops emerge as prime candidates for the installation of new shelter design. The A-Lot stop boasts ample space for construction, offering a substantial improvement over its current dated structures. Meanwhile, at Rockefeller Hall, the existing shelter diverges from the typical design seen along Feeney Way and often leaves passengers exposed to the elements. The team envisions a new shelter at Rockefeller Hall that not only provides protection for waiting passengers but also ensures visibility to bus drivers, facilitating a seamless boarding process. This proposed design aligns with the team's objectives and could serve as a prototype for future shelter installations.

Research Grants for Shelter Construction

The team identified three potential grant programs for securing funding for the shelter construction. Firstly, the FTA Buses and Bus Facilities Grant Program, aimed at government agencies and transit bodies, has historically supported bus-related facilities, including shelters. TCAT, in collaboration with Cornell, could apply for this grant, with applications due annually in April. Secondly, the US Department of Transportation's SMART Program allocates $100 million yearly for technological integration in transportation systems. To qualify, the shelter design would need to include real-time information, with applications due annually in October. Lastly, the New York State Transit State Dedicated Fund (SDF) Program offers capital project funds for government agencies, specifically targeted for system enhancements and innovative capital projects. Allocations are made annually in October as part of the Governor's multi-year Transportation Plan, providing resources that exceed federal and local availability for non-MTA systems.

Next Steps

The team is poised to collaborate with the SYSEN 5740 course "Design Thinking for Complex Systems" and the Ithaca Tompkins International Airport to enhance multimodal transportation to and from the airport and streamline curbside-to-gate operations. Conducting empathy fieldwork with airport users will provide invaluable insights for identifying areas for improvement. Additionally, the team remains committed to sourcing grant opportunities for the Shelter Design team's bus shelter prototype. Regular communication of grant information to relevant partners like TCAT and the design team ensures swift initiation of the testing and construction process by Shelter Design team.

There's a concerted effort to engage with other transit agencies and propose partnerships aimed at enhancing efficiency, sustainability, and equity within their services. Leveraging expertise in ArcGIS, empathy fieldwork, and research, the team aims to extend collaboration beyond the bus
shelter and Light Green Machines (LGM) to embrace a broader scope of impactful initiatives. These initiatives are set to kick off immediately after the current semester, ensuring a seamless continuation of ongoing work. Establishing partnerships with transit company stakeholders across the US is prioritized, aiming for collaboration commencement right from the beginning of the upcoming semester to maximize collective impact and effectiveness.
Applicant 3: David Suarez (Office of Student Government Relations)

Applicant Name: David Suarez
Applicant Organization: Office of Student Government Relations (OSGR)
Requested Funding Amount: $13,650
Current Status: Pending Commission Vote

Project Idea:
Implementing heating lamps in Bus Shelters across the CU campus
Would entail affixing a heat lamp to roofs of shelters
Currently only focused on stops with a seating area/ roofing
Includes ALL parts of campus (North, West, Central, Vet)

Problem / Beneficiary:
Focus on increasing comfort for students
Providing cozier environment for students
This would benefit all students in an equal manner
Bus Stops are accessible to all
ANY student taking the bus could use/activate the lamps

Motivation:
We were motivated by our own experience here at Cornell's Ithaca Campus as undergraduate students. Having to bear the brunt of snow/rain and low temperatures even under bus stop covers.
Applicant 4: James Paul Swenson (Student Assembly)

Applicant Name: James Paul Swenson
Applicant Organization: Student Assembly
Requested Funding Amount: $50,000
Current Status: Pending Commission Vote

Project Idea:

My idea is to increase infrastructure on campus that will improve Cornell's beauty and comfortability. I am working with the University Architects to identify areas around campus that need more greenery, benches, hammock groves, bike racks, etc. The impact to undergrads is that they will have more places to sit on and around central campus, and we will focus on specific areas of the residential communities, like West and North Campus.

Problem / Beneficiary:

The problem I am trying to address is a lack of seating outdoors on campus specifically. There are not enough benches and seating areas. Specifically, on and around the slope/central campus and around Bebee Lake. I believe the entire Cornell Community will benefit from an increase in benches. For greenery, Cornell can also get more beautiful. I am a believer that, the more trees, the better.

Motivation:

I was motivated to spend the SAIF fund given this fund does not roll over into next year. I believe these types of infrastructure improve campus life greatly and will make Cornell more comfortable and green. I am working with the University Architects to implement this idea and they will send me the unit prices of each type of item (trees, benches, bushes, chairs, etc.) and I hope to work with this committee to allocate funding and influence where specifically the infrastructure is placed.

I am requesting $50,000 from this fund to emplace more trees, bushes, benches, bike racks, and other types of relevant infrastructure on campus.
Resolution 75: Establishing the Student Assembly Campus Pulse Committee and Addressing Transparency Issues

Abstract:

Sponsored by: Patrick Kuehl ’24

Type of Action: Internal Policy

Originally Presented: DD/MM/YYYY

Current Status:

Whereas, 11% of students are sexually assaulted in their time at Cornell

Whereas, in the Spring of 2023 multiple members of our community were drugged and raped at Social Fraternities and this pattern shows a need for more resources to be allocated to keep members of our community safe.

Whereas, the Office of Ethics in its recent investigation found a pattern of hostility in the Appropriations Committee which led to an uncomfortable working environment for members of the Assembly and leadership from Byline organizations.

Whereas, the Office of Ethics also identified a lack of appropriate action taken to resolve issues of discrimination on the Student Assembly and identified increased transparency as an important step to stopping similar instances from transpiring in the future

Whereas, due to ongoing tensions on campus and around the world, incidents of islamophobia, racism, and antisemitism have increased on our campus.

Whereas, it is the charge of the Student Assembly to advocate for policies and initiatives that protect and improve our campus community.

Whereas, we have witnessed this year an unprecedented amount of tension on our campus that has required the reallocation of resources from much needed services provided to the Cornell community.

Whereas, we recognize the need for increased communication between the assembly and its stakeholders.
Be it therefore resolved, the following text be inserted as Article VIII, Section 2 of the Bylaws of the Student Assembly:

Mandatory Anti-Bias and Transparency Training

As the pursuit of anti-discrimination is a standard for the Cornell Community, all voting and ex-officio members of the Student Assembly, as well as committee members, are required to attend and participate in an annual anti-bias and transparency training. This training shall be offered multiple times throughout the summer and first semester of the academic year. The training will be facilitated by the Campus Pulse Committee and contain at least the following topics:

A. Recognizing implicit bias, this shall at a minimum be along the guidelines set forth by the UCLA Office of Equity, Diversity, and Inclusion: Implicit Bias Video Series.
B. The importance of diversity in the work of the Student Assembly
C. Working with stakeholders
D. Methods to increase relationships and transparency with the Cornell community
E. The proper channels for the reporting of bias and harassment, at the Assembly level through the Office of Ethics and at the University level through OSCCS and Title IX.

Failure to complete such training is grounds for removal from the assembly, attendance will be cataloged by the Vice President of Internal Operations

Be it further resolved, the following text be inserted in Article I Section 4 of the Student Assembly Bylaws.

F. All Student Assembly Byline organizations shall be granted one ex-officio member seat with the title (name of byline organization) representative.

Be it further resolved, a Cornell endowed account be created with the name “The Student Assembly Campus Pulse Fund.”

Be it further resolved, $400,000 be allocated from the SAFC reserve account to The Student Assembly Campus Pulse Fund.

Be it further resolved, the following text be inserted as Article VI, Section 4, Subsection B of the Bylaws of the Student Assembly:

B. Campus Pulse Committee

This committee shall serve as a programmatic body to increase the availability of resources to address pressing needs of the Student Body. It will also work to combat all
forms of bias including but not limited to, sexism, racism, xenophobia, anti-semitism, homophobia, and transphobia through programmatic implementation and workshops for the Cornell Community.

A. Composition: The composition of the committee shall be as follows:
 a. Four elected representatives of the Student Assembly other than the following.
 b. The Womxn's Issues Liaison of the Student Assembly
 c. The LGBTQIA+ representative of the Student Assembly
 d. The President of HAVEN or their designee
 e. The President of the Interfaith Council or their designee
 f. The President of ALANA or their designee
 g. The President of GJAC or their designee
 h. Two community members as chosen by the Student Assembly by application to the committee
 i. One representative of the Dean of Students as a voting member
 j. One representative from Cornell Health as a voting member
 k. The director of the Gender Justice and Inclusivity Center as a voting member

B. Charge: The charge of the committee shall be as follows:
 a. Implementing anti-bias programming, and community conversations which will work towards increasing empathy and cross-cultural dialogue between individuals and groups on the Cornell Campus
 b. Implementing programming and infrastructure to address pressing needs of the campus community.
 c. Planning, scheduling and running required student assembly anti-bias and transparency trainings for members of the Student Assembly
 d. Work with the Intergroup Dialogue Project and other similar organizations to provide spaces for dialogue among diverse groups and people on the Ithaca campus.

C. Operation: The operations of the committee shall be as follows:
 a. It shall be the responsibility of the Womxn’s Issues Liaison, in consultation with the Vice President of DEI, and the Director of the Gender Justice Advocacy Center to oversee the start of the committee each academic year. In the event that a Womxn’s Issues Liaison is not elected in the Spring, it shall be the charge of the President of the Student
Assembly, in consultation with the Vice President of DEI and the Director of the Gender Justice Advocacy Center, to start this committee.

b. A chair of this committee shall be elected internally.

c. The committee shall meet at least once every two weeks

d. The committee shall put a monthly memo about their work which will be distributed to the greater campus community via the Student Assembly newsletter.

Be it further resolved, that $8,000 immediately be allocated to this committee from the Student Assembly reserve account to work towards the following initial priorities for the Fall 2024 Semester.

1. Implementation of date-rape-drug test kits in and around the Cornell Ithaca Campus
2. Increased financial support and programming for consent education courses on the Cornell Ithaca Campus
3. Increased cross-cultural dialogue projects to recognize our shared humanity

Be it finally resolved, this newly created committee will work with other campus stakeholders, administration, and students to address gaps in the current resources and respond to pressing campus issues.

Respectfully Submitted,

Patrick Kuehl ’24

President of the Student Assembly
Resolution 75: Authorizing the Transfer of Funds for Airport Transit

Abstract:

Sponsored by: Patrick Kuehl ‘24

Type of Action: Legislation

Originally Presented: DD/MM/YYYY

Current Status:

Whereas, students have historically has low access to transit to the Syracuse and Ithaca airports.

Whereas, the transit that is available such as uber, is often expensive or not available at times that students need to get to the airport.

Be it therefore resolved, $18,000 be transferred from the Student Assembly reserve accounts to the dean of Students office

Be it further resolved, the tickets for theses buses shall be at no charge to students.

Be it further resolved, these funds will be used to charter buses multiple times after the finish of finals to both the Ithaca and Syracuse airports.

Be it further resolved, students shall sign up for transport via campus groups on a first come first serve basis.

Be it finally resolved, these funds shall be severable, any funds that are unused in this initiative shall be reappropriated to the Student Assembly reserve account after the end of the Spring 2024 academic term.

Respectfully Submitted,

Patrick Kuehl ’24

President of the Student Assembly
Resolution 79: Approving Special Projects Funding Request for Ghanaians at Cornell

Abstract: This resolution approves $3,775.00 of Special Projects Funding to the Ghanaians at Cornell to partially fund their Africa Week events beginning April 28th, 2024.

Sponsored by: Zora deRham ‘27

Reviewed by: Executive Committee

Type of Action: Recommendation

Originally Presented:

Current Status: New Business

Whereas, the Student Assembly Standing Rules, Rule 12: Spending Guidelines, Part B: Special Projects Funding outlines the purpose of Special Projects Funding and the process of approving funding requests.

Whereas, Part B: Special Projects Funding, section a, of the Student Assembly Standing Rules explains the purpose of Special Projects Funding as follows:

section a: The Student Assembly may choose to fund any project, program or service through SA Special Projects that it deems to improve the quality of undergraduate student life or to further the goals of the SA. Special Projects funding is a type of category spending.

Whereas, Part B: Special Projects Funding, section e, of the Student Assembly Standing Rules describes the approval process of Special Projects Funding as follows:

section e: Requests $1,500 and over shall be decided upon by a majority vote of the Executive Committee and confirmed by a majority vote of the Student Assembly, at large. The Assembly, at large, is only required to confirm requests of $1,500 or greater. The request should be presented to the Student Assembly in the form of a resolution.

Whereas, Africa Week programming is an annual flagship program of many of Cornell’s African student organizations, such as Nigerian Students Association, Ghanaians at Cornell, Pan African Students Association, East African Students Together, Eritrean Ethiopian Students Association, African Dance Repertoire, and Scholars in Our Society and Africa. Important and beloved events displaying vibrant African cultures include the African Wedding and Afrochella. The event will celebrate Africa Week’s tenth iteration and holds particular significance for all involved.
Whereas, Africa Week will begin April 28th, 2024. Attendance of at least 300 is expected. Costs include guest music artists for Afrochella, travel for special guests, event setup, catering, and props for the African Wedding.

Be it further resolved, that the Student Assembly approves the $3,775.00 Special Projects Funding disbursement to Ghanaians at Cornell.

Be it further resolved, that the Ghanaians at Cornell must ensure they can register this event by the required deadline, as dictated by University Policy.

Be it further resolved, should this planned event be canceled or otherwise not occur, or total expenses be less than the expenses elements outlined in their proposed budget, Ghanaians at Cornell will be required to give back to the Student Assembly all the unspent allocated monies proposed for this event.

Be it finally resolved, that the Student Assembly necessitates that this funding be used to partially cover the cost of Africa Week beginning April 28th, 2024.

Respectfully Submitted,

Zora deRham ‘27

Vice President for Finance, Student Assembly
Resolution 80: Approving Special Projects Funding Request for Nigerian Students Association

Abstract: This resolution approves $3,775.00 of Special Projects Funding to the Nigerian Students Association to partially fund their Africa Week events beginning April 28th, 2024.

Sponsored by: Zora deRham ‘27
Reviewed by: Executive Committee
Type of Action: Recommendation
Originally Presented:
Current Status: New Business

Whereas, the Student Assembly Standing Rules, Rule 12: Spending Guidelines, Part B: Special Projects Funding outlines the purpose of Special Projects Funding and the process of approving funding requests.

Whereas, Part B: Special Projects Funding, section a, of the Student Assembly Standing Rules explains the purpose of Special Projects Funding as follows:

section a: The Student Assembly may choose to fund any project, program or service through SA Special Projects that it deems to improve the quality of undergraduate student life or to further the goals of the SA. Special Projects funding is a type of category spending.

Whereas, Part B: Special Projects Funding, section e, of the Student Assembly Standing Rules describes the approval process of Special Projects Funding as follows:

section e: Requests $1,500 and over shall be decided upon by a majority vote of the Executive Committee and confirmed by a majority vote of the Student Assembly, at large. The Assembly, at large, is only required to confirm requests of $1,500 or greater. The request should be presented to the Student Assembly in the form of a resolution.

Whereas, Africa Week programming is an annual flagship program of many of Cornell’s African student organizations, such as Nigerian Students Association, Ghanaians at Cornell, Pan African Students Association, East African Students Together, Eritrean Ethiopian Students Association, African Dance Repertoire, and Scholars in Our Society and Africa. Important and beloved events displaying vibrant African cultures include the African Wedding and Afrochella. The event will celebrate Africa Week’s tenth iteration and holds particular significance for all involved.
Whereas, Africa Week will begin April 28th, 2024. Attendance of at least 300 is expected. Costs include guest music artists for Afrochella, travel for special guests, event setup, catering, and props for the African Wedding.

Be it further resolved, that the Student Assembly approves the $3,775.00 Special Projects Funding disbursement to Nigerian Students Association.

Be it further resolved, that the Nigerian Students Association must ensure they can register this event by the required deadline, as dictated by University Policy.

Be it further resolved, should this planned event be canceled or otherwise not occur, or total expenses be less than the expenses elements outlined in their proposed budget, Nigerian Students Association will be required to give back to the Student Assembly all the unspent allocated monies proposed for this event.

Be it finally resolved, that the Student Assembly necessitates that this funding be used to partially cover the cost of Africa Week beginning April 28th, 2024.

Respectfully Submitted,

Zora deRham ‘27

Vice President for Finance, Student Assembly
Resolution 81: Amending Resolution 39:
Recommendation for the Student Activity Fee for 2024-2026

Abstract: This resolution amends Resolution 39 and recommends the respective allocations for the 2024-2026 SAF Allocation Cycle.

Sponsored by: Zora deRham ’27

Reviewed by: Executive Committee (X-X-X), 05/XX/2024

Type of Action: Recommendation

Originally Presented: 05/02/2024

Current Status: New Business

Whereas, lines 324-328 of the Student Assembly Charter state;

“The Student Assembly (the Assembly), through the delegated authority of the President and the Board of Trustees, is charged with the allocation of the Student Activity Fee (SAF). This fee is mandatory for all undergraduate students of the University and shall be used to fund participation in, and viewing of, activities and programs that benefit the Cornell community. The SAF shall be determined during the fall semester of every odd-numbered year, and be subject to the approval of the President of the University.”

Whereas, lines 511-514 of the Student Assembly Charter state;

“Neither a check-off option nor an option to pay an amount in addition to the established SAF for specific programs or services will be allowed for purposes of exempting a student from paying the full amount of the SAF. Exceptions may be considered if recommended and approved by the Student Assembly and approved by the President of the University.”

Whereas, lines 545-548 of the Student Assembly Charter state;

“The SA and the GPSA and a representative of the President of the University shall review these guidelines and the procedures established in accordance therewith at least every four years in a non-fee-setting year (e.g. 2014-2015, 2018-2019). This review shall be conducted with strict adherence to the guidelines set forth by the Board of Trustees in Attachment A: Criteria for Setting and Allocating the Student Activity Fee (03/01/99).”

Be it therefore resolved, Resolution 39: Recommendation for the Student Activity Fee for 2024-2026 shall be amended to strike the following language, starting on line 29:

Be it therefore resolved, that the Student Assembly recommends the Student Activity Fee be set at $424, to be distributed as follows (with details on the accompanying Appendix);

Be it therefore resolved, Resolution 39: Recommendation for the Student Activity Fee for 2024-2026 shall be amended to insert the following language, starting on line 29:

Be it therefore resolved, that the Student Assembly recommends the Student Activity Fee be set at $384 for the 2024-2025 Academic Year, to be distributed as follows (with details on the accompanying Appendix)

Be it finally resolved, that the Student Assembly recommends the Student Activity Fee be set at $424 for the 2025-2026 Academic Year, to be distributed as follows (with details on the accompanying Appendix)
Student Activity Fee Allocation Proposal

2024-2026 Byline Funding Cycle

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Breaks</td>
<td>$ 0.00</td>
<td>$ 0.50</td>
<td>$ 0.50</td>
</tr>
<tr>
<td>Athletics and Physical Education</td>
<td>$ 7.13</td>
<td>$ 6.95</td>
<td>$ 7.70</td>
</tr>
<tr>
<td>Collegiate Readership Program</td>
<td>$ 4.30</td>
<td>$ 2.92</td>
<td>$ 2.92</td>
</tr>
<tr>
<td>Community Partnership Funding Board</td>
<td>$ 2.00</td>
<td>$ 1.80</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>Empathy, Assistance, and Referral Service</td>
<td>$ 1.60</td>
<td>$ 0.50</td>
<td>$ 0.50</td>
</tr>
<tr>
<td>Emergency Medical Services at Cornell University</td>
<td>$ 4.70</td>
<td>$ 4.65</td>
<td>$ 5.15</td>
</tr>
<tr>
<td>Minds Matter at Cornell</td>
<td>$ 1.63</td>
<td>$ 0.50</td>
<td>$ 0.50</td>
</tr>
<tr>
<td>Tatkon Center for New Students</td>
<td>$ 11.00</td>
<td>$ 12.51</td>
<td>$ 13.86</td>
</tr>
<tr>
<td>Outdoor Odyssey</td>
<td>$ 2.00</td>
<td>$ 2.62</td>
<td>$ 2.90</td>
</tr>
<tr>
<td>Student Assembly</td>
<td>$ 1.50</td>
<td>$ 2.48</td>
<td>$ 2.75</td>
</tr>
<tr>
<td>Student Club Insurance</td>
<td>$ 5.50</td>
<td>$ 5.50</td>
<td>$ 5.50</td>
</tr>
<tr>
<td>Students Helping Students Awards</td>
<td>$ 5.00</td>
<td>$ 4.60</td>
<td>$ 4.60</td>
</tr>
<tr>
<td>Cornell Sports Council</td>
<td>$ 22.00</td>
<td>$ 26.17</td>
<td>$ 29.00</td>
</tr>
<tr>
<td>Interfaith Council at Cornell</td>
<td>$ 7.00</td>
<td>$ 5.86</td>
<td>$ 6.50</td>
</tr>
<tr>
<td>Student Activities Funding Commission</td>
<td>$ 113.28</td>
<td>$ 134.02</td>
<td>$ 148.53</td>
</tr>
<tr>
<td>Student Programming Council</td>
<td>$ 0.00</td>
<td>$ 2.71</td>
<td>$ 3.00</td>
</tr>
<tr>
<td>Convocation Committee</td>
<td>$ 18.00</td>
<td>$ 16.24</td>
<td>$ 18.00</td>
</tr>
<tr>
<td>Cornell Concert Commission</td>
<td>$ 13.50</td>
<td>$ 19.85</td>
<td>$ 22.00</td>
</tr>
<tr>
<td>Cornell University Class Councils & Senior Days</td>
<td>$ 7.40</td>
<td>$ 14.44</td>
<td>$ 16.00</td>
</tr>
<tr>
<td>Cornell University Program Board</td>
<td>$ 13.56</td>
<td>$ 13.89</td>
<td>$ 15.39</td>
</tr>
<tr>
<td>Multicultural Community Fueled Activities Board</td>
<td>$ 0.00</td>
<td>$ 13.31</td>
<td>$ 14.75</td>
</tr>
<tr>
<td>Slope Day Programming Board</td>
<td>$ 21.00</td>
<td>$ 45.11</td>
<td>$ 50.00</td>
</tr>
<tr>
<td>Willard Straight Hall Student Union Board</td>
<td>$ 3.30</td>
<td>$ 5.96</td>
<td>$ 6.60</td>
</tr>
<tr>
<td>ALANA Intercultural Board</td>
<td>$ 20.00</td>
<td>$ 12.63</td>
<td>$ 14.00</td>
</tr>
<tr>
<td>CUTonight Commission</td>
<td>$ 8.00</td>
<td>$ 10.83</td>
<td>$ 12.00</td>
</tr>
<tr>
<td>Gender Justice Advocacy Center</td>
<td>$ 3.45</td>
<td>$ 3.11</td>
<td>$ 3.45</td>
</tr>
<tr>
<td>Haven: The LGBTQ Student Union</td>
<td>$ 4.40</td>
<td>$ 4.87</td>
<td>$ 5.40</td>
</tr>
<tr>
<td>Environmental Collaborative</td>
<td>$ 0.75</td>
<td>$ 0.00</td>
<td>$ 0.00</td>
</tr>
<tr>
<td>International Students Union</td>
<td>$ 7.00</td>
<td>$ 7.67</td>
<td>$ 8.50</td>
</tr>
<tr>
<td>Multicultural Greek Fraternity Council</td>
<td>$ 1.00</td>
<td>$ 1.80</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>Total Student Activity Fee</td>
<td>$ 310.00</td>
<td>$ 384.00</td>
<td>$ 424.00</td>
</tr>
</tbody>
</table>
Respectfully Submitted,

Zora deRham ’27

Vice President for Finance
Resolution 82: Approving Special Projects
Funding Request for Caribbean Students Association

Abstract: This resolution approves $4,000.00 of Special Projects Funding to the Caribbean Students Association to partially fund their CornellVal event on May 4th, 2024.

Sponsored by: Zora deRham ‘27

Reviewed by: Executive Committee

Type of Action: Recommendation

Originally Presented:

Current Status: New Business

Whereas, the Student Assembly Standing Rules, Rule 12: Spending Guidelines, Part B: Special Projects Funding outlines the purpose of Special Projects Funding and the process of approving funding requests.

Whereas, Part B: Special Projects Funding, section a, of the Student Assembly Standing Rules explains the purpose of Special Projects Funding as follows:

section a: The Student Assembly may choose to fund any project, program or service through SA Special Projects that it deems to improve the quality of undergraduate student life or to further the goals of the SA. Special Projects funding is a type of category spending.

Whereas, Part B: Special Projects Funding, section e, of the Student Assembly Standing Rules describes the approval process of Special Projects Funding as follows:

section e: Requests $1,500 and over shall be decided upon by a majority vote of the Executive Committee and confirmed by a majority vote of the Student Assembly, at large. The Assembly, at large, is only required to confirm requests of $1,500 or greater. The request should be presented to the Student Assembly in the form of a resolution.

Whereas, CornellVal is a celebratory event honoring the Caribbean tradition of a bold, costume-filled Carnival to celebrate the end of the academic year. This event will be a partnership between Caribbean Students Association with Haitian Students Association, La Associación Latina, International Students Union, and the Caribbean Students Association Dance Ensemble.
Whereas, the CornellVal event will take place on May 4th, 2024. A turnout of 500 people is expected. Costs of hosting the event include Caribbean Carnival costumes, student performances, DJ, photography, and marketing.

Be it further resolved, that the Student Assembly approves the $4,000.00 Special Projects Funding disbursement to Caribbean Students Association.

Be it further resolved, that the Caribbean Students Association must ensure they can register this event by the required deadline, as dictated by University Policy.

Be it further resolved, should this planned event be canceled or otherwise not occur, or total expenses be less than the expenses elements outlined in their proposed budget, Caribbean Students Association will be required to give back to the Student Assembly all the unspent allocated monies proposed for this event.

Be it finally resolved, that the Student Assembly necessitates that this funding be used to partially cover the cost of the CornellVal event on May 4th, 2024.

Respectfully Submitted,

Zora deRham ’27

Vice President for Finance, Student Assembly
Resolution 83: Disapproving of Proposed Amendments to the Student Activity Funding Commission Constitution

Abstract: This resolution rejects proposed amendments to the Student Activities Funding Commission (SAFC) constitution. The Student Assembly Charter requires the governing documents of each byline organizations, including SAFC, to be approved by the Student Assembly prior to taking effect. This resolution rejects the proposed amendments for concerns relating to violations of the Student Assembly Charter the proposed amendments may create.

Sponsored by: Clyde Lederman ’26, Nicholas Maggard ’26, Agnes Coleman ’26,

Reviewed by: Not Applicable

Type of Action: Internal Policy

Originally Presented: 05/02/2024

Current Status: Introduced

Whereas, the Student Activity Finance Commission is responsible for the allocation of no less than 35% of the Student Activity Fee, pursuant to Appendix A, Section 13 of the Student Assembly Charter;

Whereas, the Charter of the Student Assembly places the Student Activity Finance Commission under the purview of the Student Assembly;

Whereas, the Charter of the Student Assembly defines the Student Activity Finance Commission in Appendix A, Section 2 as “the designated Finance Commission of the Student Assembly” and in Appendix C, Section 4 as “a “committee of the Student Assembly”;

Whereas, the Student Assembly historically has exercised its authority as a matter of internal policy over the Student Activity Finance Commission through the adoption of amendments to the Commission’s governing documents in the following academic years:

- Academic Year 2018-2019 — Resolution 30;
- Academic Year 2017-2018 — Resolution 47;
- Academic Year 2016-2017 — Resolution 24;
- Academic Year 2014-2015 — Resolutions 21 and 44;
- Academic Year 2013-2014 — Resolutions 3, 40, 41, 74, 80; and
• Academic Year 2012-2013 — Resolutions 3 and 50.

Whereas, in addition to the Student Activity Finance Commission’s status as a committee of the Student Assembly, the Student Activity Finance Commission is classified as a byline organization, and therefore subject to the Appendix B, Section 3, Subsection N of the Charter of the Student Assembly;

Whereas, Appendix B, Section 3, Subsection N of the Charter of the Student Assembly states, “All organizations must submit any changes in the Organizations’ bylaws, constitution, or other governing documents to the SA for its approval”;

Whereas, a search of the records of the Office of the Assemblies indicates most recent copy of the governing documents of the Student Activity Finance Commission to be approved by the Student Assembly occurred on March 21, 2019 with the adoption of Resolution 30 (AY 2018-2019);

Whereas, SAFC internally adopted amendments to the Student Activity Finance Commission constitution on February 5, 2024;

Whereas, the proposed February 5, 2024 amendments to the Student Activity Finance Commission constitution have not been approved by the Student Assembly;

Whereas, the proposed February 5, 2024 amendments may violate the Charter of the Student Assembly by removing mandatory oversight functions of the Student Assembly;

Be it therefore resolved, pursuant to Appendix B, Section 3, Subsection N of the Charter of the Student Assembly, the Student Assembly hereby rejects the proposed February 5, 2024 amendments to the constitution of the Student Activity Finance Commission;

Resolved, until a time at which the Student Assembly shall approve revised governing documents for SAFC, the Student Assembly hereby determines that the governing documents of the Student Activity Finance Commission as approved Resolution 30 (AY 2018-2019) remain in force, and the true and correct copy of the governing documents of the same;

Resolved, the Student Activity Finance Commission is strongly encouraged to engage collaboratively in the development of its governing documents.

Respectfully Submitted,

Clyde Lederman ’26

Vice President for Internal Operations, Student Assembly
Nicholas Maggard ’26,
Parliamentarian, Student Assembly

Agnes Coleman ’26,
Executive Archivist, Student Assembly